STAR Experiment at RHIC

Nu Xu (for STAR Collaboration)

Nuclear Science Division
Lawrence Berkeley National Laboratory

Many Thanks to the Organizers!

Quantum Chromodynamics

- Quantum Chromodynamics (QCD) is the established theory of strongly interacting matter.
- 2) Gluons hold quarks together to from hadrons:

meson

baryon

3) Gluons and quarks, or partons, typically exist in a color singlet state: *confinement*.

Relativistic Heavy Ion Collider (RHIC)

Brookhaven National Laboratory (BNL), Upton, NY

STAR Detectors: Full 2π particle identification!

STAR Physics Focus

Polarized *p*+*p* program

- Study proton intrinsic properties

Forward program

- Study low-x properties, search for **CGC**
- Study elastic (inelastic) processes (pp2pp)
- Investigate gluonic exchanges

1) At 200 GeV top energy

- Study medium properties, EoS
- pQCD in hot and dense medium

2) RHIC beam energy scan

- Search for the **QCD** critical point
- Chiral symmetry restoration

Outline

- 1) Results from spin program
- 2) Results from heavy-ion program
- 3) Future programs

More interesting results can be found at http://www.star.bnl.gov/

Proton Spin Physics

Study proton spin structure with QCD degrees of freedom: quarks and gluons

∆g Measurements at RHIC

Polarized p+p Measurements at STAR

STAR: Large acceptance for correlation measurements

di-jets/hadron and γ-jet

$$x_{1(2)} = \frac{1}{\sqrt{s}} \left[p_{T_3} e^{\eta_3(-\eta_3)} + p_{T_4} e^{\eta_4(-\eta_4)} \right]$$

$$M = \sqrt{x_1 x_2 s} \qquad \eta_3 + \eta_4 = \ln \frac{x_1}{x_2} \qquad \cos \theta^* = \tanh \left(\frac{\eta_3 - \eta_4}{2}\right)$$

$$\cos \theta^* = \tanh \left(\frac{\eta_3 - \eta_4}{2} \right)$$

500 GeV p+p Collisions

High-Energy Nuclear Collisions

Study QCD phase structure and search for the QCD Critical point

sQGP and the QCD Phase Diagram

In 200 GeV Au+Au collisions at RHIC, strongly interacting matter formed:

- Jet energy loss: R_{AA}
- Strong collectivity: v_0 , v_1 , v_2
- Hadronization via coalescence: n_α-scaling

Questions:

Is thermalization reached at RHIC?

- Systematic analysis with dN/dp_T and dv₂/dp_T results...
- Heavy quark and di-lepton measurements

When (at which energy) does this transition happen? What does the QCD phase diagram look like?

- RHIC beam energy scan (BES)

The QCD Phase Diagram and High-Energy Nuclear Collisions

Search for Local Parity Violation

in High Energy Nuclear Collisions

Animation by *Derek Leinweber*

Topological transitions have never been observed *directly* (e.g. at the level of quarks in DIS). An observation of the *spontaneous strong*, *local* **parity violation** would be a clear proof for the existence of the physics.

Chiral Magnetic Effect:

Kharzeev, PL <u>**B633**</u> 260 (06). Kharzeev, et al, NP <u>**A797**</u> 67(07). Kharzeev, et al, NP <u>**A803**</u> 227(08). Fukushima, et al, PR<u>**D78**</u>, 074033(08).

Search for Local Parity Violation

in High Energy Nuclear Collisions

The separation between the same-charge and opposite-charge correlations.

- Strong external EM field
- De-confinement and Chiral symmetry restoration

$$\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle$$

Parity even observable Voloshin, PR <u>C62</u>, 044901(00).

STAR; arXiv: 0909.1739 (PRL); 0909.1717 (PRC).

Anisotropy Parameter v₂

coordinate-space-anisotropy

momentum-space-anisotropy

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle} \qquad v_2 = \langle \cos 2\varphi \rangle, \quad \varphi = \tan^{-1}(\frac{p_y}{p_x})$$

Initial/final conditions, EoS, degrees of freedom

Collectivity, Deconfinement at RHIC

- v₂ of light hadrons and multi-strange hadrons
- scaling by the number of quarks

At RHIC:

- N_q scaling novel hadronization process
- □ Parton flow
 De-confinement

PHENIX: PRL<u>91</u>, 182301(03) STAR: PRL<u>92</u>, 052302(04), <u>95</u>, 122301(05) nucl-ex/0405022, QM05

S. Voloshin, NPA715, 379(03) Models: Greco et al, PR<u>C68,</u> 034904(03) Chen, Ko, nucl-th/0602025 Nonaka et al. <u>PLB583</u>, 73(04) X. Dong, et al., Phys. Lett. <u>B597</u>, 328(04).

Partonic Collectivity at RHIC

Low p_T (\leq 2 GeV/c): hydrodynamic mass ordering High p_T (> 2 GeV/c): number of quarks ordering s-quark hadron: smaller interaction strength in hadronic medium light- and s-quark hadrons: similar v_2 pattern

=> Collectivity developed at partonic stage!

The QCD Critical Point

RHIC (200) & LHC: Determine the temperature T_{ini} , T_{C}

BES: Explore the QCD phase diagram determine T_E , location of the *phase* boundary

- Low baryon density, cross over
- LGT calculation, universality, and models hinted the existence of the critical point on the QCD phase diagram* at finite baryon chemical potential.
- Experimental evidence for either the critical point and/or 1st order transition is important for our knowledge of the QCD phase diagram*.

* Thermalization assumed

M. Stephanov, K. Rajagopal, and E. Shuryak, PRL <u>81</u>, 4816(98); K. Rajagopal, PR <u>D61</u>, 105017 (00)

http://www.er.doe.gov/np/nsac/docs/Nuclear-Science.Low-Res.pdf

Observables: χ_q , χ_S

Event by event:

- 1. net-proton Kurtosis $K_p(E)^*$
- 2. two proton correlation functions $C_2(E)$
- 3. ratio of the d/p
- 4. ratio of K/p

 $K_p = \frac{1}{\langle N_p^2 \rangle}$

^{*} Gavai and Gupta, 03, 05; Gupta 0909.4630

M. Cheng et al. 08

Gupta, Karsch, Stephanov, INT, 08

Higher Moments Analysis (BES)

- Higher moments are more sensitive to QCD critical point related fluctuation.
- 2) The 4th moment, Kurtosis, corresponding to the thermodynamic quantity: susceptibility of conserved quantum numbers. It is also related to the temperature of the system.

STAR Detector

STAR: The Sea-Quark Program (2011)

500 GeV p+p collisions

$$u + \overline{d} \rightarrow W^+ \rightarrow e^+ + v$$

$$\overline{u} + d \rightarrow W^- \rightarrow e^- + \overline{v}$$

Forward GEM Tracker: FGT

- 1) Charge sign identification for high momentum electrons from W[±] decay (Energy determined with EEMC)
- 2) Triple-GEM technology, Summer 2011 for Run12

STAR Heavy Flavor Tracker (2014)

HFT: 2012-2014

- 1) Two-layer thin CMOS pixels; one-layer strips; SSD
- 2) First layer at 2.5 cm from beam pipe, 2π coverage
- 3) Resolution~20µm
- → Measure open charm hadrons down to low p_T ~ 0.5
 GeV/c

HFT: Charm Hadron v₂ and R_{AA}

- 200 GeV Au+Au m.b. collisions (500M events).
- Charm hadron collectivity ⇒ drag/diffusion constants ⇒

Medium properties!

- 200 GeV Au+Au m.b. collisions (|y|<0.5 500M events)
- Charm hadron R_{AA} ⇒
 - Energy loss mechanism!
 - QCD in dense medium!

STAR QCD physics program for the next decade:

Spin Physics:

- 200 GeV: Δg inclusive and di-jets, γ-jet
- 500 GeV: sea quark helicity distributions
- 200/500 GeV: transverse spin phenomena

Heavy Ion Physics:

- Thermalization at 200 GeV
- QCD phase boundary and critical point (BES)
- In medium properties(?)

Low-x Physics:

- Study gluon-rich phenomena at RHIC
- Color glass condensate